On infinite-rank singular perturbations of the Schrödinger operator
نویسندگان
چکیده
منابع مشابه
Rank One Perturbations at Infinite Coupling
We discuss rank one perturbationsAα = A+α(φ, ·)φ,α ∈ R , A ≥ 0 self-adjoint. Let dμα(x) be the spectral measure defined by (φ, (Aα − z)−1φ) = ∫ dμα(x)/(x− z). We prove there is a measure dρ∞ which is the weak limit of (1 + α)dμα(x) as α → ∞. If φ is cyclic for A, then A∞, the strong resolvent limit of Aα, is unitarily equivalent to multiplication by x on L(R , dρ∞). This generalizes results kno...
متن کاملOn the eigenvalues for slowly varying perturbations of a periodic Schrödinger operator
In this paper, I consider one-dimensional periodic Schrödinger operators perturbed by a slowly decaying potential. In the adiabatic limit, I give an asymptotic expansion of the eigenvalues in the gaps of the periodic operator. When one slides the perturbation along the periodic potential, these eigenvalues oscillate. I compute the exponentially small amplitude of the oscillations.
متن کاملResolutions of the Coulomb operator. Part III. Reduced-rank Schrödinger equations.
We consider a modified Schrödinger equation wherein the electron-electron repulsion terms r(ij)(-1) are approximated by truncated one-particle resolutions. Numerical results for the He atom and H2 molecule at the Hartree-Fock, second-order Møller-Plesset, and configuration interaction levels show that the solutions of the resulting reduced-rank Schrödinger equations converge rapidly, and that e...
متن کاملOn the Loewy Rank of Infinite Algebras
The Loewy rank of a complete lattice L is deened as follows. Take the meet a 1 of all coatoms of L. Then let a 2 be the meet of all lower covers of a 1. Iterate this process to deene a for every ordinal by letting a +1 be the meet of all lower covers of a , and a the meet of all a (for <) if is a limit ordinal. The Loewy rank of L is the smallest ordinal for which a is the zero of L, and the sy...
متن کاملsurvey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ukrainian Mathematical Journal
سال: 2008
ISSN: 0041-5995,1573-9376
DOI: 10.1007/s11253-008-0077-9